A New Look at the Schouten-Nijenhuis, Frölicher-Nijenhuis and Nijenhuis-Richardson Brackets for Symplectic Spaces

نویسنده

  • E. Gozzi
چکیده

In this paper we re-express the Schouten-Nijenhuis, the Frölicher-Nijenhuis and the Nijenhuis-Richardson brackets on a symplectic space using the extended Poisson brackets structure present in the path-integral formulation of classical mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gozzi CARTAN CALCULUS AND ITS GENERALIZATIONS VIA A PATH - INTEGRAL APPROACH TO CLASSICAL MECHANICS

In this paper we review the recently proposed path-integral counterpart of the Koopman-von Neumann operatorial approach to classical Hamiltonian mechanics. We identify in particular the geometrical variables entering this tbrmulation and show that they are essentially a basis of the cotangent bundle to the tangent bundle to phase-space. In this space we introduce an extended Poisson brackets st...

متن کامل

Cartan Calculus and Its Generalizations via a Path-integral Approach to Classical Mechanics

In this paper we review the recently proposed path-integral counterpart of the Koopman-von Neumann operatorial approach to classical Hamiltonian mechanics. We identify in particular the geometrical variables entering this formulation and show that they are essentially a basis of the cotangent bundle to the tangent bundle to phase-space. In this space we introduce an extended Poisson brackets st...

متن کامل

J an 2 00 3 Kähler - Nijenhuis Manifolds by Izu Vaisman

A Kähler-Nijenhuis manifold is a Kähler manifold M , with metric g, complex structure J and Kähler form Ω, endowed with a Nijenhuis tensor field A that is compatible with the Poisson structure defined by Ω in the sense of the theory of Poisson-Nijenhuis structures. If this happens, and if AJ = ±JA, M is foliated by im A into non degenerate Kähler-Nijenhuis submanifolds. If A is a non degenerate...

متن کامل

Z-graded extensions of Poisson brackets

A Z-graded Lie bracket { , }P on the exterior algebra Ω(M) of differential forms, which is an extension of the Poisson bracket of functions on a Poisson manifold (M,P ), is found. This bracket is simultaneously graded skew-symmetric and satisfies the graded Jacobi identity. It is a kind of an ‘integral’ of the Koszul-Schouten bracket [ , ]P of differential forms in the sense that the exterior d...

متن کامل

The Frölicher-Nijenhuis Calculus in Synthetic Differential Geometry

Just as the Jacobi identity of vector fields is a natural consequence of the general Jacobi identity of microcubes in synthetic differential geometry, it is to be shown in this paper that the graded Jacobi identity of the Frölicher-Nijenhuis bracket is also a natural consequence of the general Jacobi identity of microcubes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999